140,179 research outputs found

    Variable Bandwidth Analog Channel Filters for Software Defined Radio

    Get PDF
    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper first explains the importance of channel filtering. Then the advantage of analog channel filtering with a variable bandwidth in a Software Defined Radio is demonstrated. This is done by comparing the requirements of the analog-to-digital converter with and without an analog filter with a variable bandwidth. Then, a technique for channel filtering is described, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of high linearity, low noise and inherent energy efficiency. Some limitations of the concept are discussed. Finally, conclusions are drawn and our ideas for further research are presented

    On strict passivity and its application to interpolation and Hl control

    Get PDF
    The authors introduce the L2-system and derive necessary and sufficient conditions for these systems to be strictly passive. Strictly passive L2-systems are characterized as having a representation in terms of a co-J-lossless matrix. A state space proof is developed and provides a Riccati equation characterization of a strictly passive L 2-system, as well as a formula for the co-J-lossless matrix representation. Applications to Nevanlinna-Pick interpolation and an H∞ filtering problem are considere

    Model of Low-pass Filtering of Local Field Potentials in Brain Tissue

    Full text link
    Local field potentials (LFPs) are routinely measured experimentally in brain tissue, and exhibit strong low-pass frequency filtering properties, with high frequencies (such as action potentials) being visible only at very short distances (≈\approx10~ÎŒm\mu m) from the recording electrode. Understanding this filtering is crucial to relate LFP signals with neuronal activity, but not much is known about the exact mechanisms underlying this low-pass filtering. In this paper, we investigate a possible biophysical mechanism for the low-pass filtering properties of LFPs. We investigate the propagation of electric fields and its frequency dependence close to the current source, i.e. at length scales in the order of average interneuronal distance. We take into account the presence of a high density of cellular membranes around current sources, such as glial cells. By considering them as passive cells, we show that under the influence of the electric source field, they respond by polarisation, i.e., creation of an induced field. Because of the finite velocity of ionic charge movement, this polarization will not be instantaneous. Consequently, the induced electric field will be frequency-dependent, and much reduced for high frequencies. Our model establishes that with respect to frequency attenuation properties, this situation is analogous to an equivalent RC-circuit, or better a system of coupled RC-circuits. We present a number of numerical simulations of induced electric field for biologically realistic values of parameters, and show this frequency filtering effect as well as the attenuation of extracellular potentials with distance. We suggest that induced electric fields in passive cells surrounding neurons is the physical origin of frequency filtering properties of LFPs.Comment: 10 figs, revised tex file and revised fig

    Ultrafast all-optical switching by cross phase modulation induced wavelength conversion in silicon-on-insulator waveguides and ring resonators

    Get PDF
    We present new results on ultrafast alloptical wavelength conversion in Silicon-on-Insulator waveguides through cross phase modulation. We demonstrate sub-picosecond all-optical switching with 13dB on/off ratio by combining the nonlinear wavelength conversion in the port waveguide with passive filtering using an integrated SOI microring resonator.\u

    High-Q variable bandwidth passive filters for Software Defined Radio

    Get PDF
    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of high linearity, low noise and inherent energy efficiency. After an explanation of the concept, the requirements on the subsequent analog-todigital conversion are compared with those in a system where (part of) the channel selection is performed digitally. Some drawbacks of the concept are discussed. Finally, conclusions are drawn and our ideas for further research are presented

    A wideband high-linearity RF receiver front-end in CMOS

    Get PDF
    This paper presents a wideband high-linearity RF receiver-front-end, implemented in standard 0.18 /spl mu/m CMOS technology. The design employs a noise-canceling LNA in combination with two passive mixers, followed by lowpass-filtering and amplification at IF. The achieved bandwidth is >2 GHz, with a noise figure of 6.5 dB, +1 dBm IIP/sub 3/, +34.5 dBm IIP/sub 2/ and <50 kHz 1/f-noise corner frequency

    Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index

    Full text link
    We demonstrate passive harmonic mode-locking of a quantum well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a non-periodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.Comment: 3 page

    Ultrafast wavelength jumping and wavelength adjustment with low current using monolithically integrated FML for long-reach UDWDM-PON

    Get PDF
    Ultrafast wavelength jumping at optical network units (ONUs) for an access network with frequency modulated lasers (FMLs) is demonstrated. This FML consists of an intracavity tunable phase section and filtering gain section. It provides a total of 4.2 nm tuning range with fast wavelength jumping (2.2 nm in 1 ”s) and fast adjustment (1.3 nm in 1.8 ns), providing a candidate for the fast tuning ONU for coherent ultradense wavelength-division multiplexing passive optical networks (WDM-PONs).Peer ReviewedPostprint (author's final draft
    • 

    corecore